Characteristics of QLCS Downdrafts and Environments Observed during the VORTEX-Southeast Project

R ————
-ﬂ

James Marquis Karen Kosiba =  Josh Wurman Paul Robinson

= CSWR

Project Goal: Dual-Doppler, surface (sticknet or “stesonet”), and sounding observations collected in multiple 2017 storms targeted by VORTEX-SE are examined to determine environmental
sensitivities of downdraft properties in severe convective storms in the Southeast United States. Two QLCS storms, a storm type commonly associated with tornadoes in the SE U.S., were an-
alyzed, 27 March and 30 April 2017. The 27 March case is the focus of this poster because of the superior observation density ahead of and within the storm. Current focus is to relate surface
outflow temperature, downdraft strength, and hydrometeor types in downdrafts to environmental profiles and heterogeneity in the SE U.S.
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reach the surface as a downdraft (without significant downward-oriented pressure gradi-
ent forces present). Downdraft air with thermodynamics consistent with surface data from
the “Middle” and ‘North” stesonet stations have similar origin altitudes; thus, there is only
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CONCLUSIONS: Our project goal is to relate characteristics of severe QLCS downdrafts with local environments ob-
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